A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

نویسندگان

  • Mikołaj Słabicki
  • Mirko Theis
  • Dragomir B. Krastev
  • Sergey Samsonov
  • Emeline Mundwiller
  • Magno Junqueira
  • Maciej Paszkowski-Rogacz
  • Joan Teyra
  • Anne-Kristin Heninger
  • Ina Poser
  • Fabienne Prieur
  • Jérémy Truchetto
  • Christian Confavreux
  • Cécilia Marelli
  • Alexandra Durr
  • Jean Philippe Camdessanche
  • Alexis Brice
  • Andrej Shevchenko
  • M. Teresa Pisabarro
  • Giovanni Stevanin
  • Frank Buchholz
چکیده

DNA repair is essential to maintain genome integrity, and genes with roles in DNA repair are frequently mutated in a variety of human diseases. Repair via homologous recombination typically restores the original DNA sequence without introducing mutations, and a number of genes that are required for homologous recombination DNA double-strand break repair (HR-DSBR) have been identified. However, a systematic analysis of this important DNA repair pathway in mammalian cells has not been reported. Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA) screen for genes involved in DNA double strand break repair. We report 61 genes that influenced the frequency of HR-DSBR and characterize in detail one of the genes that decreased the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraplegia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel HSP-associated gene, and show that a KIAA0415/SPG48 mutant cell line is more sensitive to DNA damaging drugs. We present the first genome-scale survey of HR-DSBR in mammalian cells providing a dataset that should accelerate the discovery of novel genes with roles in DNA repair and associated medical conditions. The discovery that proteins forming a novel protein complex are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests a link between HSP and DNA repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48.

Hereditary spastic paraplegias are a heterogeneous group of neurodegenerative disorders, clinically classified in pure and complex forms. Genetically, more than 70 different forms of spastic paraplegias have been characterized. A subgroup of complicate recessive forms has been distinguished for the presence of thin corpus callosum and white matter lesions at brain imaging. This group includes s...

متن کامل

AP5Z1/SPG48 frequency in autosomal recessive and sporadic spastic paraplegia

Hereditary spastic paraplegias (HSP) constitute a rare and highly heterogeneous group of neurodegenerative disorders, defined clinically by progressive lower limb spasticity and pyramidal weakness. Autosomal recessive HSP as well as sporadic cases present a significant diagnostic challenge. Mutations in AP5Z1, a gene playing a role in intracellular membrane trafficking, have been recently repor...

متن کامل

Three novel mutations of the spastin gene in Chinese patients with hereditary spastic paraplegia.

BACKGROUND Hereditary spastic paraplegia is a group of genetically heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs. The most common form of hereditary spastic paraplegia is caused by mutations in the spastin gene (SPG4), which encodes spastin, an adenosine triphosphatase associated with various cellular activities protein. OBJECTIVE To inve...

متن کامل

Hereditary spastic paraplegia: a novel mutation and expansion of the phenotype variability in SPG10

We describe a novel sporadic case of SPG56, a rare complicated form of HSP, that expands the clinical and molecular spectrum of the disease, being associated to novel mutations in CYP2U1 and showing as novel feature dorsal hydromyelia at spinal cord MRI. The patient presented an early-onset, slowly progressive paraparesis associated with mild mental retardation. Neurological assessments include...

متن کامل

ACO2 homozygous missense mutation associated with complicated hereditary spastic paraplegia

Objective To identify the clinical characteristics and genetic etiology of a family affected with hereditary spastic paraplegia (HSP). Methods Clinical, genetic, and functional analyses involving genome-wide linkage coupled to whole-exome sequencing in a consanguineous family with complicated HSP. Results A homozygous missense mutation was identified in the ACO2 gene (c.1240T>G p.Phe414Val)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010